Факториал числа 944

!
944! = 1932795786490790705422033741680812825210880916326416671869984952803165688399454564720371267406752571184471372754847937427418377615055195944167118427871178697638980699090871148807897412488043866085221929252973488389710727837427014563553340935733713310673955797067201201645354976148566673999693695139916953057024373220777072128066419851691606428359476860494769979669307180211118280732392297904715630052705144935277545642535797189115758007356079474670407300214486757094452164180980190012901163791922661295469278612271708286214951451556307591504627640089105833734683287831937049584691922249655925387813697539902511688910980301327174020804737873673846857631442283860061631823615751155685885202691665271229031906493637217611728810461073380144005073674034565062200795799238411305589342056448275746310803757068931556629107972431395356217046276881580750708606058008111395932142531770512021108971299995864242648427489879307712921882641833474118932951222150913657522354875023451205261289723969352561097493795431777273823820502704084143978722247421373851145283875835953671620730818135509289057587413309783324020224870571977503379899283133202413020647274709457403181332921605213095444984204842577003958245288780840187722831622816731401648997669001937099892326737563473521260368249027289126310857453638605019901273716826732946470528689673352612812371614237616943945060690427042419243345840093180521749395815505313328847219466806949598372208892337781073234212878283796412525623010702116955612616544802819560117705673306532974518863955786420287234257198347466684157136898459803754039340880322770851272493757928443020781180313478730644516908547130264759803721357431765626102808181477671182272383551826926459160666920334294999589310063618310704468931265944839607660564097903285595149149232247132755696697703785909223753920436211973560274526806660938393957770463093670253160481348668376070452821420166622765313911884306143944551655495276980143389382722155708849153563479874306101031912288341697244642788347561938245898697415525951876485234878934721809617709601572381382210298182950898620953011371037197201155737260281385992002977015268884431833236609119597760348894564178176486818394931200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
944! = 1×2×3×4×5×6×7×8×9×10×11×12×13×14×15×16×17×18×19×20×21×22×23×24×25×26×27×28×29×30×31×32×33×34×35×36×37×38×39×40×41×42×43×44×45×46×47×48×49×50×51×52×53×54×55×56×57×58×59×60×61×62×63×64×65×66×67×68×69×70×71×72×73×74×75×76×77×78×79×80×81×82×83×84×85×86×87×88×89×90×91×92×93×94×95×96×97×98×99×100×101×102×103×104×105×106×107×108×109×110×111×112×113×114×115×116×117×118×119×120×121×122×123×124×125×126×127×128×129×130×131×132×133×134×135×136×137×138×139×140×141×142×143×144×145×146×147×148×149×150×151×152×153×154×155×156×157×158×159×160×161×162×163×164×165×166×167×168×169×170×171×172×173×174×175×176×177×178×179×180×181×182×183×184×185×186×187×188×189×190×191×192×193×194×195×196×197×198×199×200×201×202×203×204×205×206×207×208×209×210×211×212×213×214×215×216×217×218×219×220×221×222×223×224×225×226×227×228×229×230×231×232×233×234×235×236×237×238×239×240×241×242×243×244×245×246×247×248×249×250×251×252×253×254×255×256×257×258×259×260×261×262×263×264×265×266×267×268×269×270×271×272×273×274×275×276×277×278×279×280×281×282×283×284×285×286×287×288×289×290×291×292×293×294×295×296×297×298×299×300×301×302×303×304×305×306×307×308×309×310×311×312×313×314×315×316×317×318×319×320×321×322×323×324×325×326×327×328×329×330×331×332×333×334×335×336×337×338×339×340×341×342×343×344×345×346×347×348×349×350×351×352×353×354×355×356×357×358×359×360×361×362×363×364×365×366×367×368×369×370×371×372×373×374×375×376×377×378×379×380×381×382×383×384×385×386×387×388×389×390×391×392×393×394×395×396×397×398×399×400×401×402×403×404×405×406×407×408×409×410×411×412×413×414×415×416×417×418×419×420×421×422×423×424×425×426×427×428×429×430×431×432×433×434×435×436×437×438×439×440×441×442×443×444×445×446×447×448×449×450×451×452×453×454×455×456×457×458×459×460×461×462×463×464×465×466×467×468×469×470×471×472×473×474×475×476×477×478×479×480×481×482×483×484×485×486×487×488×489×490×491×492×493×494×495×496×497×498×499×500×501×502×503×504×505×506×507×508×509×510×511×512×513×514×515×516×517×518×519×520×521×522×523×524×525×526×527×528×529×530×531×532×533×534×535×536×537×538×539×540×541×542×543×544×545×546×547×548×549×550×551×552×553×554×555×556×557×558×559×560×561×562×563×564×565×566×567×568×569×570×571×572×573×574×575×576×577×578×579×580×581×582×583×584×585×586×587×588×589×590×591×592×593×594×595×596×597×598×599×600×601×602×603×604×605×606×607×608×609×610×611×612×613×614×615×616×617×618×619×620×621×622×623×624×625×626×627×628×629×630×631×632×633×634×635×636×637×638×639×640×641×642×643×644×645×646×647×648×649×650×651×652×653×654×655×656×657×658×659×660×661×662×663×664×665×666×667×668×669×670×671×672×673×674×675×676×677×678×679×680×681×682×683×684×685×686×687×688×689×690×691×692×693×694×695×696×697×698×699×700×701×702×703×704×705×706×707×708×709×710×711×712×713×714×715×716×717×718×719×720×721×722×723×724×725×726×727×728×729×730×731×732×733×734×735×736×737×738×739×740×741×742×743×744×745×746×747×748×749×750×751×752×753×754×755×756×757×758×759×760×761×762×763×764×765×766×767×768×769×770×771×772×773×774×775×776×777×778×779×780×781×782×783×784×785×786×787×788×789×790×791×792×793×794×795×796×797×798×799×800×801×802×803×804×805×806×807×808×809×810×811×812×813×814×815×816×817×818×819×820×821×822×823×824×825×826×827×828×829×830×831×832×833×834×835×836×837×838×839×840×841×842×843×844×845×846×847×848×849×850×851×852×853×854×855×856×857×858×859×860×861×862×863×864×865×866×867×868×869×870×871×872×873×874×875×876×877×878×879×880×881×882×883×884×885×886×887×888×889×890×891×892×893×894×895×896×897×898×899×900×901×902×903×904×905×906×907×908×909×910×911×912×913×914×915×916×917×918×919×920×921×922×923×924×925×926×927×928×929×930×931×932×933×934×935×936×937×938×939×940×941×942×943×944
Теория

Факториалом натурального числа n называется произведение всех натуральных чисел от 1 до n.Обозначается как n!.

n! = 1 × 2 × 3 × . . . × (n - 1) × n

Разберём пример

Найдём факториал числа 5

5! = 1 × 2 × 3 × 4 × 5 = 120