Рассчитать высоту треугольника со сторонами 100, 55 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 55 + 51}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-100)(103-55)(103-51)}}{55}\normalsize = 31.9351409}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-100)(103-55)(103-51)}}{100}\normalsize = 17.5643275}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-100)(103-55)(103-51)}}{51}\normalsize = 34.4398578}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 55 и 51 равна 31.9351409
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 55 и 51 равна 17.5643275
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 55 и 51 равна 34.4398578
Ссылка на результат
?n1=100&n2=55&n3=51
Найти высоту треугольника со сторонами 77, 52 и 38
Найти высоту треугольника со сторонами 121, 112 и 107
Найти высоту треугольника со сторонами 136, 122 и 35
Найти высоту треугольника со сторонами 111, 102 и 71
Найти высоту треугольника со сторонами 106, 78 и 77
Найти высоту треугольника со сторонами 134, 123 и 48
Найти высоту треугольника со сторонами 121, 112 и 107
Найти высоту треугольника со сторонами 136, 122 и 35
Найти высоту треугольника со сторонами 111, 102 и 71
Найти высоту треугольника со сторонами 106, 78 и 77
Найти высоту треугольника со сторонами 134, 123 и 48