Рассчитать высоту треугольника со сторонами 100, 57 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 57 + 47}{2}} \normalsize = 102}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102(102-100)(102-57)(102-47)}}{57}\normalsize = 24.9320406}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102(102-100)(102-57)(102-47)}}{100}\normalsize = 14.2112631}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102(102-100)(102-57)(102-47)}}{47}\normalsize = 30.2367301}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 57 и 47 равна 24.9320406
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 57 и 47 равна 14.2112631
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 57 и 47 равна 30.2367301
Ссылка на результат
?n1=100&n2=57&n3=47
Найти высоту треугольника со сторонами 64, 46 и 27
Найти высоту треугольника со сторонами 143, 86 и 64
Найти высоту треугольника со сторонами 148, 137 и 80
Найти высоту треугольника со сторонами 125, 123 и 92
Найти высоту треугольника со сторонами 86, 57 и 47
Найти высоту треугольника со сторонами 81, 75 и 51
Найти высоту треугольника со сторонами 143, 86 и 64
Найти высоту треугольника со сторонами 148, 137 и 80
Найти высоту треугольника со сторонами 125, 123 и 92
Найти высоту треугольника со сторонами 86, 57 и 47
Найти высоту треугольника со сторонами 81, 75 и 51