Рассчитать высоту треугольника со сторонами 100, 67 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 67 + 57}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-100)(112-67)(112-57)}}{67}\normalsize = 54.4430477}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-100)(112-67)(112-57)}}{100}\normalsize = 36.476842}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-100)(112-67)(112-57)}}{57}\normalsize = 63.9944596}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 67 и 57 равна 54.4430477
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 67 и 57 равна 36.476842
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 67 и 57 равна 63.9944596
Ссылка на результат
?n1=100&n2=67&n3=57
Найти высоту треугольника со сторонами 142, 127 и 57
Найти высоту треугольника со сторонами 118, 86 и 48
Найти высоту треугольника со сторонами 124, 116 и 24
Найти высоту треугольника со сторонами 128, 106 и 88
Найти высоту треугольника со сторонами 138, 113 и 92
Найти высоту треугольника со сторонами 131, 106 и 59
Найти высоту треугольника со сторонами 118, 86 и 48
Найти высоту треугольника со сторонами 124, 116 и 24
Найти высоту треугольника со сторонами 128, 106 и 88
Найти высоту треугольника со сторонами 138, 113 и 92
Найти высоту треугольника со сторонами 131, 106 и 59