Рассчитать высоту треугольника со сторонами 100, 68 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 68 + 63}{2}} \normalsize = 115.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115.5(115.5-100)(115.5-68)(115.5-63)}}{68}\normalsize = 62.1447408}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115.5(115.5-100)(115.5-68)(115.5-63)}}{100}\normalsize = 42.2584237}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115.5(115.5-100)(115.5-68)(115.5-63)}}{63}\normalsize = 67.076863}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 68 и 63 равна 62.1447408
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 68 и 63 равна 42.2584237
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 68 и 63 равна 67.076863
Ссылка на результат
?n1=100&n2=68&n3=63
Найти высоту треугольника со сторонами 57, 34 и 34
Найти высоту треугольника со сторонами 122, 116 и 86
Найти высоту треугольника со сторонами 134, 122 и 98
Найти высоту треугольника со сторонами 127, 114 и 61
Найти высоту треугольника со сторонами 150, 123 и 61
Найти высоту треугольника со сторонами 127, 89 и 89
Найти высоту треугольника со сторонами 122, 116 и 86
Найти высоту треугольника со сторонами 134, 122 и 98
Найти высоту треугольника со сторонами 127, 114 и 61
Найти высоту треугольника со сторонами 150, 123 и 61
Найти высоту треугольника со сторонами 127, 89 и 89