Рассчитать высоту треугольника со сторонами 100, 70 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 70 + 64}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-100)(117-70)(117-64)}}{70}\normalsize = 63.5969387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-100)(117-70)(117-64)}}{100}\normalsize = 44.5178571}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-100)(117-70)(117-64)}}{64}\normalsize = 69.5591517}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 70 и 64 равна 63.5969387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 70 и 64 равна 44.5178571
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 70 и 64 равна 69.5591517
Ссылка на результат
?n1=100&n2=70&n3=64
Найти высоту треугольника со сторонами 136, 123 и 57
Найти высоту треугольника со сторонами 133, 122 и 98
Найти высоту треугольника со сторонами 143, 143 и 105
Найти высоту треугольника со сторонами 144, 111 и 77
Найти высоту треугольника со сторонами 141, 112 и 40
Найти высоту треугольника со сторонами 128, 112 и 49
Найти высоту треугольника со сторонами 133, 122 и 98
Найти высоту треугольника со сторонами 143, 143 и 105
Найти высоту треугольника со сторонами 144, 111 и 77
Найти высоту треугольника со сторонами 141, 112 и 40
Найти высоту треугольника со сторонами 128, 112 и 49