Рассчитать высоту треугольника со сторонами 100, 74 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 74 + 56}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-100)(115-74)(115-56)}}{74}\normalsize = 55.2091117}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-100)(115-74)(115-56)}}{100}\normalsize = 40.8547427}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-100)(115-74)(115-56)}}{56}\normalsize = 72.9548977}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 74 и 56 равна 55.2091117
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 74 и 56 равна 40.8547427
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 74 и 56 равна 72.9548977
Ссылка на результат
?n1=100&n2=74&n3=56
Найти высоту треугольника со сторонами 138, 118 и 94
Найти высоту треугольника со сторонами 134, 82 и 77
Найти высоту треугольника со сторонами 76, 50 и 33
Найти высоту треугольника со сторонами 132, 131 и 89
Найти высоту треугольника со сторонами 142, 142 и 113
Найти высоту треугольника со сторонами 132, 91 и 72
Найти высоту треугольника со сторонами 134, 82 и 77
Найти высоту треугольника со сторонами 76, 50 и 33
Найти высоту треугольника со сторонами 132, 131 и 89
Найти высоту треугольника со сторонами 142, 142 и 113
Найти высоту треугольника со сторонами 132, 91 и 72