Рассчитать высоту треугольника со сторонами 100, 78 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 78 + 24}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-100)(101-78)(101-24)}}{78}\normalsize = 10.8443958}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-100)(101-78)(101-24)}}{100}\normalsize = 8.45862873}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-100)(101-78)(101-24)}}{24}\normalsize = 35.2442864}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 78 и 24 равна 10.8443958
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 78 и 24 равна 8.45862873
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 78 и 24 равна 35.2442864
Ссылка на результат
?n1=100&n2=78&n3=24
Найти высоту треугольника со сторонами 71, 69 и 6
Найти высоту треугольника со сторонами 93, 72 и 25
Найти высоту треугольника со сторонами 150, 87 и 68
Найти высоту треугольника со сторонами 145, 124 и 41
Найти высоту треугольника со сторонами 142, 121 и 117
Найти высоту треугольника со сторонами 149, 142 и 82
Найти высоту треугольника со сторонами 93, 72 и 25
Найти высоту треугольника со сторонами 150, 87 и 68
Найти высоту треугольника со сторонами 145, 124 и 41
Найти высоту треугольника со сторонами 142, 121 и 117
Найти высоту треугольника со сторонами 149, 142 и 82