Рассчитать высоту треугольника со сторонами 100, 84 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 84 + 41}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-100)(112.5-84)(112.5-41)}}{84}\normalsize = 40.304861}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-100)(112.5-84)(112.5-41)}}{100}\normalsize = 33.8560833}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-100)(112.5-84)(112.5-41)}}{41}\normalsize = 82.5758129}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 84 и 41 равна 40.304861
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 84 и 41 равна 33.8560833
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 84 и 41 равна 82.5758129
Ссылка на результат
?n1=100&n2=84&n3=41
Найти высоту треугольника со сторонами 124, 121 и 116
Найти высоту треугольника со сторонами 110, 110 и 96
Найти высоту треугольника со сторонами 141, 121 и 56
Найти высоту треугольника со сторонами 85, 57 и 49
Найти высоту треугольника со сторонами 135, 122 и 97
Найти высоту треугольника со сторонами 147, 138 и 103
Найти высоту треугольника со сторонами 110, 110 и 96
Найти высоту треугольника со сторонами 141, 121 и 56
Найти высоту треугольника со сторонами 85, 57 и 49
Найти высоту треугольника со сторонами 135, 122 и 97
Найти высоту треугольника со сторонами 147, 138 и 103