Рассчитать высоту треугольника со сторонами 100, 89 и 19

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 89 + 19}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-100)(104-89)(104-19)}}{89}\normalsize = 16.3659698}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-100)(104-89)(104-19)}}{100}\normalsize = 14.5657132}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-100)(104-89)(104-19)}}{19}\normalsize = 76.6616482}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 89 и 19 равна 16.3659698
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 89 и 19 равна 14.5657132
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 89 и 19 равна 76.6616482
Ссылка на результат
?n1=100&n2=89&n3=19