Рассчитать высоту треугольника со сторонами 101, 101 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 101 + 49}{2}} \normalsize = 125.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125.5(125.5-101)(125.5-101)(125.5-49)}}{101}\normalsize = 47.5365092}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125.5(125.5-101)(125.5-101)(125.5-49)}}{101}\normalsize = 47.5365092}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125.5(125.5-101)(125.5-101)(125.5-49)}}{49}\normalsize = 97.983417}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 101 и 49 равна 47.5365092
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 101 и 49 равна 47.5365092
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 101 и 49 равна 97.983417
Ссылка на результат
?n1=101&n2=101&n3=49
Найти высоту треугольника со сторонами 56, 52 и 24
Найти высоту треугольника со сторонами 49, 42 и 26
Найти высоту треугольника со сторонами 146, 119 и 108
Найти высоту треугольника со сторонами 136, 85 и 71
Найти высоту треугольника со сторонами 80, 79 и 74
Найти высоту треугольника со сторонами 97, 74 и 67
Найти высоту треугольника со сторонами 49, 42 и 26
Найти высоту треугольника со сторонами 146, 119 и 108
Найти высоту треугольника со сторонами 136, 85 и 71
Найти высоту треугольника со сторонами 80, 79 и 74
Найти высоту треугольника со сторонами 97, 74 и 67