Рассчитать высоту треугольника со сторонами 101, 54 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 54 + 51}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-101)(103-54)(103-51)}}{54}\normalsize = 26.8330202}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-101)(103-54)(103-51)}}{101}\normalsize = 14.3463672}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-101)(103-54)(103-51)}}{51}\normalsize = 28.4114332}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 54 и 51 равна 26.8330202
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 54 и 51 равна 14.3463672
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 54 и 51 равна 28.4114332
Ссылка на результат
?n1=101&n2=54&n3=51
Найти высоту треугольника со сторонами 130, 123 и 74
Найти высоту треугольника со сторонами 90, 74 и 35
Найти высоту треугольника со сторонами 139, 116 и 86
Найти высоту треугольника со сторонами 97, 80 и 18
Найти высоту треугольника со сторонами 107, 76 и 64
Найти высоту треугольника со сторонами 130, 99 и 67
Найти высоту треугольника со сторонами 90, 74 и 35
Найти высоту треугольника со сторонами 139, 116 и 86
Найти высоту треугольника со сторонами 97, 80 и 18
Найти высоту треугольника со сторонами 107, 76 и 64
Найти высоту треугольника со сторонами 130, 99 и 67