Рассчитать высоту треугольника со сторонами 101, 63 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 63 + 40}{2}} \normalsize = 102}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102(102-101)(102-63)(102-40)}}{63}\normalsize = 15.7658605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102(102-101)(102-63)(102-40)}}{101}\normalsize = 9.83415063}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102(102-101)(102-63)(102-40)}}{40}\normalsize = 24.8312303}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 63 и 40 равна 15.7658605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 63 и 40 равна 9.83415063
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 63 и 40 равна 24.8312303
Ссылка на результат
?n1=101&n2=63&n3=40
Найти высоту треугольника со сторонами 99, 92 и 53
Найти высоту треугольника со сторонами 128, 118 и 86
Найти высоту треугольника со сторонами 130, 100 и 60
Найти высоту треугольника со сторонами 143, 108 и 46
Найти высоту треугольника со сторонами 144, 106 и 81
Найти высоту треугольника со сторонами 135, 122 и 31
Найти высоту треугольника со сторонами 128, 118 и 86
Найти высоту треугольника со сторонами 130, 100 и 60
Найти высоту треугольника со сторонами 143, 108 и 46
Найти высоту треугольника со сторонами 144, 106 и 81
Найти высоту треугольника со сторонами 135, 122 и 31