Рассчитать высоту треугольника со сторонами 101, 72 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 72 + 41}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-101)(107-72)(107-41)}}{72}\normalsize = 33.8275857}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-101)(107-72)(107-41)}}{101}\normalsize = 24.1147146}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-101)(107-72)(107-41)}}{41}\normalsize = 59.4045408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 72 и 41 равна 33.8275857
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 72 и 41 равна 24.1147146
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 72 и 41 равна 59.4045408
Ссылка на результат
?n1=101&n2=72&n3=41
Найти высоту треугольника со сторонами 131, 112 и 77
Найти высоту треугольника со сторонами 106, 103 и 43
Найти высоту треугольника со сторонами 93, 79 и 39
Найти высоту треугольника со сторонами 69, 66 и 16
Найти высоту треугольника со сторонами 145, 113 и 106
Найти высоту треугольника со сторонами 93, 78 и 20
Найти высоту треугольника со сторонами 106, 103 и 43
Найти высоту треугольника со сторонами 93, 79 и 39
Найти высоту треугольника со сторонами 69, 66 и 16
Найти высоту треугольника со сторонами 145, 113 и 106
Найти высоту треугольника со сторонами 93, 78 и 20