Рассчитать высоту треугольника со сторонами 101, 77 и 49

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 77 + 49}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-101)(113.5-77)(113.5-49)}}{77}\normalsize = 47.4699197}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-101)(113.5-77)(113.5-49)}}{101}\normalsize = 36.1899388}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-101)(113.5-77)(113.5-49)}}{49}\normalsize = 74.5955881}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 77 и 49 равна 47.4699197
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 77 и 49 равна 36.1899388
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 77 и 49 равна 74.5955881
Ссылка на результат
?n1=101&n2=77&n3=49