Рассчитать высоту треугольника со сторонами 101, 83 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 83 + 33}{2}} \normalsize = 108.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108.5(108.5-101)(108.5-83)(108.5-33)}}{83}\normalsize = 30.160669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108.5(108.5-101)(108.5-83)(108.5-33)}}{101}\normalsize = 24.7855002}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108.5(108.5-101)(108.5-83)(108.5-33)}}{33}\normalsize = 75.8586523}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 83 и 33 равна 30.160669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 83 и 33 равна 24.7855002
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 83 и 33 равна 75.8586523
Ссылка на результат
?n1=101&n2=83&n3=33
Найти высоту треугольника со сторонами 96, 86 и 57
Найти высоту треугольника со сторонами 101, 79 и 48
Найти высоту треугольника со сторонами 141, 111 и 79
Найти высоту треугольника со сторонами 108, 91 и 28
Найти высоту треугольника со сторонами 141, 90 и 57
Найти высоту треугольника со сторонами 108, 69 и 52
Найти высоту треугольника со сторонами 101, 79 и 48
Найти высоту треугольника со сторонами 141, 111 и 79
Найти высоту треугольника со сторонами 108, 91 и 28
Найти высоту треугольника со сторонами 141, 90 и 57
Найти высоту треугольника со сторонами 108, 69 и 52