Рассчитать высоту треугольника со сторонами 101, 83 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 83 + 59}{2}} \normalsize = 121.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121.5(121.5-101)(121.5-83)(121.5-59)}}{83}\normalsize = 58.9912157}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121.5(121.5-101)(121.5-83)(121.5-59)}}{101}\normalsize = 48.4779297}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121.5(121.5-101)(121.5-83)(121.5-59)}}{59}\normalsize = 82.9876424}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 83 и 59 равна 58.9912157
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 83 и 59 равна 48.4779297
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 83 и 59 равна 82.9876424
Ссылка на результат
?n1=101&n2=83&n3=59
Найти высоту треугольника со сторонами 144, 118 и 41
Найти высоту треугольника со сторонами 71, 68 и 40
Найти высоту треугольника со сторонами 135, 116 и 57
Найти высоту треугольника со сторонами 110, 98 и 51
Найти высоту треугольника со сторонами 142, 110 и 82
Найти высоту треугольника со сторонами 117, 117 и 39
Найти высоту треугольника со сторонами 71, 68 и 40
Найти высоту треугольника со сторонами 135, 116 и 57
Найти высоту треугольника со сторонами 110, 98 и 51
Найти высоту треугольника со сторонами 142, 110 и 82
Найти высоту треугольника со сторонами 117, 117 и 39