Рассчитать высоту треугольника со сторонами 101, 86 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 86 + 33}{2}} \normalsize = 110}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110(110-101)(110-86)(110-33)}}{86}\normalsize = 31.4557558}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110(110-101)(110-86)(110-33)}}{101}\normalsize = 26.7841089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110(110-101)(110-86)(110-33)}}{33}\normalsize = 81.9756061}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 86 и 33 равна 31.4557558
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 86 и 33 равна 26.7841089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 86 и 33 равна 81.9756061
Ссылка на результат
?n1=101&n2=86&n3=33
Найти высоту треугольника со сторонами 90, 73 и 53
Найти высоту треугольника со сторонами 135, 89 и 58
Найти высоту треугольника со сторонами 113, 102 и 67
Найти высоту треугольника со сторонами 49, 39 и 26
Найти высоту треугольника со сторонами 130, 125 и 93
Найти высоту треугольника со сторонами 145, 126 и 61
Найти высоту треугольника со сторонами 135, 89 и 58
Найти высоту треугольника со сторонами 113, 102 и 67
Найти высоту треугольника со сторонами 49, 39 и 26
Найти высоту треугольника со сторонами 130, 125 и 93
Найти высоту треугольника со сторонами 145, 126 и 61