Рассчитать высоту треугольника со сторонами 101, 86 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 86 + 43}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-101)(115-86)(115-43)}}{86}\normalsize = 42.6392669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-101)(115-86)(115-43)}}{101}\normalsize = 36.3067025}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-101)(115-86)(115-43)}}{43}\normalsize = 85.2785339}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 86 и 43 равна 42.6392669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 86 и 43 равна 36.3067025
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 86 и 43 равна 85.2785339
Ссылка на результат
?n1=101&n2=86&n3=43
Найти высоту треугольника со сторонами 144, 132 и 128
Найти высоту треугольника со сторонами 146, 131 и 30
Найти высоту треугольника со сторонами 103, 81 и 27
Найти высоту треугольника со сторонами 116, 83 и 49
Найти высоту треугольника со сторонами 136, 129 и 45
Найти высоту треугольника со сторонами 135, 82 и 63
Найти высоту треугольника со сторонами 146, 131 и 30
Найти высоту треугольника со сторонами 103, 81 и 27
Найти высоту треугольника со сторонами 116, 83 и 49
Найти высоту треугольника со сторонами 136, 129 и 45
Найти высоту треугольника со сторонами 135, 82 и 63