Рассчитать высоту треугольника со сторонами 101, 88 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 88 + 51}{2}} \normalsize = 120}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120(120-101)(120-88)(120-51)}}{88}\normalsize = 50.9934366}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120(120-101)(120-88)(120-51)}}{101}\normalsize = 44.429925}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120(120-101)(120-88)(120-51)}}{51}\normalsize = 87.988675}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 88 и 51 равна 50.9934366
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 88 и 51 равна 44.429925
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 88 и 51 равна 87.988675
Ссылка на результат
?n1=101&n2=88&n3=51
Найти высоту треугольника со сторонами 119, 106 и 27
Найти высоту треугольника со сторонами 65, 51 и 27
Найти высоту треугольника со сторонами 102, 85 и 83
Найти высоту треугольника со сторонами 130, 114 и 75
Найти высоту треугольника со сторонами 56, 45 и 17
Найти высоту треугольника со сторонами 118, 113 и 14
Найти высоту треугольника со сторонами 65, 51 и 27
Найти высоту треугольника со сторонами 102, 85 и 83
Найти высоту треугольника со сторонами 130, 114 и 75
Найти высоту треугольника со сторонами 56, 45 и 17
Найти высоту треугольника со сторонами 118, 113 и 14