Рассчитать высоту треугольника со сторонами 101, 90 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 90 + 36}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-101)(113.5-90)(113.5-36)}}{90}\normalsize = 35.7211314}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-101)(113.5-90)(113.5-36)}}{101}\normalsize = 31.8307111}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-101)(113.5-90)(113.5-36)}}{36}\normalsize = 89.3028285}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 90 и 36 равна 35.7211314
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 90 и 36 равна 31.8307111
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 90 и 36 равна 89.3028285
Ссылка на результат
?n1=101&n2=90&n3=36
Найти высоту треугольника со сторонами 121, 95 и 67
Найти высоту треугольника со сторонами 133, 81 и 73
Найти высоту треугольника со сторонами 131, 104 и 56
Найти высоту треугольника со сторонами 103, 98 и 69
Найти высоту треугольника со сторонами 58, 49 и 49
Найти высоту треугольника со сторонами 147, 140 и 83
Найти высоту треугольника со сторонами 133, 81 и 73
Найти высоту треугольника со сторонами 131, 104 и 56
Найти высоту треугольника со сторонами 103, 98 и 69
Найти высоту треугольника со сторонами 58, 49 и 49
Найти высоту треугольника со сторонами 147, 140 и 83