Рассчитать высоту треугольника со сторонами 101, 93 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 93 + 14}{2}} \normalsize = 104}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104(104-101)(104-93)(104-14)}}{93}\normalsize = 11.9520373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104(104-101)(104-93)(104-14)}}{101}\normalsize = 11.0053413}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104(104-101)(104-93)(104-14)}}{14}\normalsize = 79.3956766}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 93 и 14 равна 11.9520373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 93 и 14 равна 11.0053413
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 93 и 14 равна 79.3956766
Ссылка на результат
?n1=101&n2=93&n3=14
Найти высоту треугольника со сторонами 34, 26 и 26
Найти высоту треугольника со сторонами 73, 72 и 26
Найти высоту треугольника со сторонами 65, 61 и 42
Найти высоту треугольника со сторонами 73, 46 и 28
Найти высоту треугольника со сторонами 137, 131 и 89
Найти высоту треугольника со сторонами 121, 113 и 112
Найти высоту треугольника со сторонами 73, 72 и 26
Найти высоту треугольника со сторонами 65, 61 и 42
Найти высоту треугольника со сторонами 73, 46 и 28
Найти высоту треугольника со сторонами 137, 131 и 89
Найти высоту треугольника со сторонами 121, 113 и 112