Рассчитать высоту треугольника со сторонами 101, 93 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 93 + 48}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-101)(121-93)(121-48)}}{93}\normalsize = 47.8294268}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-101)(121-93)(121-48)}}{101}\normalsize = 44.0409573}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-101)(121-93)(121-48)}}{48}\normalsize = 92.6695143}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 93 и 48 равна 47.8294268
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 93 и 48 равна 44.0409573
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 93 и 48 равна 92.6695143
Ссылка на результат
?n1=101&n2=93&n3=48
Найти высоту треугольника со сторонами 148, 107 и 80
Найти высоту треугольника со сторонами 136, 114 и 90
Найти высоту треугольника со сторонами 135, 131 и 93
Найти высоту треугольника со сторонами 125, 122 и 56
Найти высоту треугольника со сторонами 142, 94 и 59
Найти высоту треугольника со сторонами 79, 71 и 41
Найти высоту треугольника со сторонами 136, 114 и 90
Найти высоту треугольника со сторонами 135, 131 и 93
Найти высоту треугольника со сторонами 125, 122 и 56
Найти высоту треугольника со сторонами 142, 94 и 59
Найти высоту треугольника со сторонами 79, 71 и 41