Рассчитать высоту треугольника со сторонами 101, 98 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{101 + 98 + 59}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-101)(129-98)(129-59)}}{98}\normalsize = 57.1357138}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-101)(129-98)(129-59)}}{101}\normalsize = 55.4386134}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-101)(129-98)(129-59)}}{59}\normalsize = 94.9033891}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 101, 98 и 59 равна 57.1357138
Высота треугольника опущенная с вершины A на сторону BC со сторонами 101, 98 и 59 равна 55.4386134
Высота треугольника опущенная с вершины C на сторону AB со сторонами 101, 98 и 59 равна 94.9033891
Ссылка на результат
?n1=101&n2=98&n3=59
Найти высоту треугольника со сторонами 116, 112 и 90
Найти высоту треугольника со сторонами 122, 115 и 39
Найти высоту треугольника со сторонами 122, 105 и 86
Найти высоту треугольника со сторонами 139, 124 и 91
Найти высоту треугольника со сторонами 82, 71 и 43
Найти высоту треугольника со сторонами 149, 106 и 87
Найти высоту треугольника со сторонами 122, 115 и 39
Найти высоту треугольника со сторонами 122, 105 и 86
Найти высоту треугольника со сторонами 139, 124 и 91
Найти высоту треугольника со сторонами 82, 71 и 43
Найти высоту треугольника со сторонами 149, 106 и 87