Рассчитать высоту треугольника со сторонами 102, 62 и 46

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 62 + 46}{2}} \normalsize = 105}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{105(105-102)(105-62)(105-46)}}{62}\normalsize = 28.8372483}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{105(105-102)(105-62)(105-46)}}{102}\normalsize = 17.5285235}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{105(105-102)(105-62)(105-46)}}{46}\normalsize = 38.8675955}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 62 и 46 равна 28.8372483
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 62 и 46 равна 17.5285235
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 62 и 46 равна 38.8675955
Ссылка на результат
?n1=102&n2=62&n3=46