Рассчитать высоту треугольника со сторонами 102, 62 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 62 + 61}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-102)(112.5-62)(112.5-61)}}{62}\normalsize = 56.5403536}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-102)(112.5-62)(112.5-61)}}{102}\normalsize = 34.3676659}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-102)(112.5-62)(112.5-61)}}{61}\normalsize = 57.4672447}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 62 и 61 равна 56.5403536
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 62 и 61 равна 34.3676659
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 62 и 61 равна 57.4672447
Ссылка на результат
?n1=102&n2=62&n3=61
Найти высоту треугольника со сторонами 95, 68 и 64
Найти высоту треугольника со сторонами 135, 126 и 12
Найти высоту треугольника со сторонами 146, 138 и 43
Найти высоту треугольника со сторонами 92, 74 и 39
Найти высоту треугольника со сторонами 67, 63 и 26
Найти высоту треугольника со сторонами 125, 93 и 42
Найти высоту треугольника со сторонами 135, 126 и 12
Найти высоту треугольника со сторонами 146, 138 и 43
Найти высоту треугольника со сторонами 92, 74 и 39
Найти высоту треугольника со сторонами 67, 63 и 26
Найти высоту треугольника со сторонами 125, 93 и 42