Рассчитать высоту треугольника со сторонами 102, 65 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 65 + 63}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-102)(115-65)(115-63)}}{65}\normalsize = 60.6630036}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-102)(115-65)(115-63)}}{102}\normalsize = 38.6577964}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-102)(115-65)(115-63)}}{63}\normalsize = 62.5888132}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 65 и 63 равна 60.6630036
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 65 и 63 равна 38.6577964
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 65 и 63 равна 62.5888132
Ссылка на результат
?n1=102&n2=65&n3=63
Найти высоту треугольника со сторонами 97, 59 и 54
Найти высоту треугольника со сторонами 110, 75 и 55
Найти высоту треугольника со сторонами 136, 114 и 102
Найти высоту треугольника со сторонами 149, 135 и 19
Найти высоту треугольника со сторонами 145, 119 и 58
Найти высоту треугольника со сторонами 94, 76 и 36
Найти высоту треугольника со сторонами 110, 75 и 55
Найти высоту треугольника со сторонами 136, 114 и 102
Найти высоту треугольника со сторонами 149, 135 и 19
Найти высоту треугольника со сторонами 145, 119 и 58
Найти высоту треугольника со сторонами 94, 76 и 36