Рассчитать высоту треугольника со сторонами 102, 68 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 68 + 46}{2}} \normalsize = 108}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108(108-102)(108-68)(108-46)}}{68}\normalsize = 37.2850239}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108(108-102)(108-68)(108-46)}}{102}\normalsize = 24.8566826}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108(108-102)(108-68)(108-46)}}{46}\normalsize = 55.1169919}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 68 и 46 равна 37.2850239
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 68 и 46 равна 24.8566826
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 68 и 46 равна 55.1169919
Ссылка на результат
?n1=102&n2=68&n3=46
Найти высоту треугольника со сторонами 142, 139 и 102
Найти высоту треугольника со сторонами 136, 131 и 41
Найти высоту треугольника со сторонами 60, 49 и 29
Найти высоту треугольника со сторонами 105, 63 и 47
Найти высоту треугольника со сторонами 68, 48 и 46
Найти высоту треугольника со сторонами 140, 120 и 107
Найти высоту треугольника со сторонами 136, 131 и 41
Найти высоту треугольника со сторонами 60, 49 и 29
Найти высоту треугольника со сторонами 105, 63 и 47
Найти высоту треугольника со сторонами 68, 48 и 46
Найти высоту треугольника со сторонами 140, 120 и 107