Рассчитать высоту треугольника со сторонами 102, 71 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 71 + 68}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-102)(120.5-71)(120.5-68)}}{71}\normalsize = 67.8005608}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-102)(120.5-71)(120.5-68)}}{102}\normalsize = 47.194508}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-102)(120.5-71)(120.5-68)}}{68}\normalsize = 70.791762}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 71 и 68 равна 67.8005608
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 71 и 68 равна 47.194508
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 71 и 68 равна 70.791762
Ссылка на результат
?n1=102&n2=71&n3=68
Найти высоту треугольника со сторонами 131, 112 и 98
Найти высоту треугольника со сторонами 140, 90 и 86
Найти высоту треугольника со сторонами 90, 50 и 48
Найти высоту треугольника со сторонами 130, 118 и 76
Найти высоту треугольника со сторонами 143, 136 и 74
Найти высоту треугольника со сторонами 130, 113 и 64
Найти высоту треугольника со сторонами 140, 90 и 86
Найти высоту треугольника со сторонами 90, 50 и 48
Найти высоту треугольника со сторонами 130, 118 и 76
Найти высоту треугольника со сторонами 143, 136 и 74
Найти высоту треугольника со сторонами 130, 113 и 64