Рассчитать высоту треугольника со сторонами 102, 77 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 77 + 46}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-102)(112.5-77)(112.5-46)}}{77}\normalsize = 43.3745698}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-102)(112.5-77)(112.5-46)}}{102}\normalsize = 32.7435478}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-102)(112.5-77)(112.5-46)}}{46}\normalsize = 72.6052582}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 77 и 46 равна 43.3745698
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 77 и 46 равна 32.7435478
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 77 и 46 равна 72.6052582
Ссылка на результат
?n1=102&n2=77&n3=46
Найти высоту треугольника со сторонами 115, 77 и 70
Найти высоту треугольника со сторонами 101, 98 и 26
Найти высоту треугольника со сторонами 130, 120 и 118
Найти высоту треугольника со сторонами 135, 85 и 61
Найти высоту треугольника со сторонами 64, 57 и 10
Найти высоту треугольника со сторонами 145, 129 и 119
Найти высоту треугольника со сторонами 101, 98 и 26
Найти высоту треугольника со сторонами 130, 120 и 118
Найти высоту треугольника со сторонами 135, 85 и 61
Найти высоту треугольника со сторонами 64, 57 и 10
Найти высоту треугольника со сторонами 145, 129 и 119