Рассчитать высоту треугольника со сторонами 102, 93 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 93 + 19}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-102)(107-93)(107-19)}}{93}\normalsize = 17.4593991}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-102)(107-93)(107-19)}}{102}\normalsize = 15.9188639}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-102)(107-93)(107-19)}}{19}\normalsize = 85.4591639}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 93 и 19 равна 17.4593991
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 93 и 19 равна 15.9188639
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 93 и 19 равна 85.4591639
Ссылка на результат
?n1=102&n2=93&n3=19
Найти высоту треугольника со сторонами 127, 80 и 62
Найти высоту треугольника со сторонами 102, 97 и 63
Найти высоту треугольника со сторонами 118, 107 и 35
Найти высоту треугольника со сторонами 99, 95 и 39
Найти высоту треугольника со сторонами 86, 78 и 73
Найти высоту треугольника со сторонами 115, 108 и 45
Найти высоту треугольника со сторонами 102, 97 и 63
Найти высоту треугольника со сторонами 118, 107 и 35
Найти высоту треугольника со сторонами 99, 95 и 39
Найти высоту треугольника со сторонами 86, 78 и 73
Найти высоту треугольника со сторонами 115, 108 и 45