Рассчитать высоту треугольника со сторонами 102, 95 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 95 + 73}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-102)(135-95)(135-73)}}{95}\normalsize = 69.9771233}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-102)(135-95)(135-73)}}{102}\normalsize = 65.1747717}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-102)(135-95)(135-73)}}{73}\normalsize = 91.0661193}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 95 и 73 равна 69.9771233
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 95 и 73 равна 65.1747717
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 95 и 73 равна 91.0661193
Ссылка на результат
?n1=102&n2=95&n3=73
Найти высоту треугольника со сторонами 148, 99 и 85
Найти высоту треугольника со сторонами 145, 141 и 138
Найти высоту треугольника со сторонами 111, 97 и 75
Найти высоту треугольника со сторонами 116, 112 и 10
Найти высоту треугольника со сторонами 133, 102 и 37
Найти высоту треугольника со сторонами 139, 134 и 88
Найти высоту треугольника со сторонами 145, 141 и 138
Найти высоту треугольника со сторонами 111, 97 и 75
Найти высоту треугольника со сторонами 116, 112 и 10
Найти высоту треугольника со сторонами 133, 102 и 37
Найти высоту треугольника со сторонами 139, 134 и 88