Рассчитать высоту треугольника со сторонами 102, 96 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 96 + 36}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-102)(117-96)(117-36)}}{96}\normalsize = 35.9956052}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-102)(117-96)(117-36)}}{102}\normalsize = 33.8782167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-102)(117-96)(117-36)}}{36}\normalsize = 95.9882805}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 96 и 36 равна 35.9956052
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 96 и 36 равна 33.8782167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 96 и 36 равна 95.9882805
Ссылка на результат
?n1=102&n2=96&n3=36
Найти высоту треугольника со сторонами 138, 123 и 99
Найти высоту треугольника со сторонами 119, 91 и 38
Найти высоту треугольника со сторонами 107, 86 и 63
Найти высоту треугольника со сторонами 103, 93 и 56
Найти высоту треугольника со сторонами 68, 43 и 33
Найти высоту треугольника со сторонами 104, 59 и 57
Найти высоту треугольника со сторонами 119, 91 и 38
Найти высоту треугольника со сторонами 107, 86 и 63
Найти высоту треугольника со сторонами 103, 93 и 56
Найти высоту треугольника со сторонами 68, 43 и 33
Найти высоту треугольника со сторонами 104, 59 и 57