Рассчитать высоту треугольника со сторонами 102, 96 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 96 + 64}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-102)(131-96)(131-64)}}{96}\normalsize = 62.182021}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-102)(131-96)(131-64)}}{102}\normalsize = 58.524255}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-102)(131-96)(131-64)}}{64}\normalsize = 93.2730315}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 96 и 64 равна 62.182021
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 96 и 64 равна 58.524255
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 96 и 64 равна 93.2730315
Ссылка на результат
?n1=102&n2=96&n3=64
Найти высоту треугольника со сторонами 51, 43 и 43
Найти высоту треугольника со сторонами 129, 117 и 77
Найти высоту треугольника со сторонами 56, 56 и 38
Найти высоту треугольника со сторонами 108, 102 и 73
Найти высоту треугольника со сторонами 107, 83 и 37
Найти высоту треугольника со сторонами 26, 23 и 12
Найти высоту треугольника со сторонами 129, 117 и 77
Найти высоту треугольника со сторонами 56, 56 и 38
Найти высоту треугольника со сторонами 108, 102 и 73
Найти высоту треугольника со сторонами 107, 83 и 37
Найти высоту треугольника со сторонами 26, 23 и 12