Рассчитать высоту треугольника со сторонами 102, 99 и 57

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 99 + 57}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-102)(129-99)(129-57)}}{99}\normalsize = 55.4113095}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-102)(129-99)(129-57)}}{102}\normalsize = 53.7815651}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-102)(129-99)(129-57)}}{57}\normalsize = 96.2406955}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 99 и 57 равна 55.4113095
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 99 и 57 равна 53.7815651
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 99 и 57 равна 96.2406955
Ссылка на результат
?n1=102&n2=99&n3=57