Рассчитать высоту треугольника со сторонами 103, 100 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 100 + 42}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-103)(122.5-100)(122.5-42)}}{100}\normalsize = 41.6010742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-103)(122.5-100)(122.5-42)}}{103}\normalsize = 40.3893924}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-103)(122.5-100)(122.5-42)}}{42}\normalsize = 99.0501767}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 100 и 42 равна 41.6010742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 100 и 42 равна 40.3893924
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 100 и 42 равна 99.0501767
Ссылка на результат
?n1=103&n2=100&n3=42
Найти высоту треугольника со сторонами 101, 82 и 46
Найти высоту треугольника со сторонами 118, 78 и 60
Найти высоту треугольника со сторонами 149, 114 и 109
Найти высоту треугольника со сторонами 136, 113 и 61
Найти высоту треугольника со сторонами 68, 58 и 49
Найти высоту треугольника со сторонами 138, 123 и 40
Найти высоту треугольника со сторонами 118, 78 и 60
Найти высоту треугольника со сторонами 149, 114 и 109
Найти высоту треугольника со сторонами 136, 113 и 61
Найти высоту треугольника со сторонами 68, 58 и 49
Найти высоту треугольника со сторонами 138, 123 и 40