Рассчитать высоту треугольника со сторонами 103, 101 и 27

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 101 + 27}{2}} \normalsize = 115.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115.5(115.5-103)(115.5-101)(115.5-27)}}{101}\normalsize = 26.9531952}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115.5(115.5-103)(115.5-101)(115.5-27)}}{103}\normalsize = 26.4298322}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115.5(115.5-103)(115.5-101)(115.5-27)}}{27}\normalsize = 100.824915}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 101 и 27 равна 26.9531952
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 101 и 27 равна 26.4298322
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 101 и 27 равна 100.824915
Ссылка на результат
?n1=103&n2=101&n3=27