Рассчитать высоту треугольника со сторонами 103, 101 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 101 + 45}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-103)(124.5-101)(124.5-45)}}{101}\normalsize = 44.282285}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-103)(124.5-101)(124.5-45)}}{103}\normalsize = 43.4224348}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-103)(124.5-101)(124.5-45)}}{45}\normalsize = 99.3891286}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 101 и 45 равна 44.282285
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 101 и 45 равна 43.4224348
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 101 и 45 равна 99.3891286
Ссылка на результат
?n1=103&n2=101&n3=45
Найти высоту треугольника со сторонами 131, 109 и 85
Найти высоту треугольника со сторонами 111, 109 и 86
Найти высоту треугольника со сторонами 146, 83 и 68
Найти высоту треугольника со сторонами 109, 107 и 73
Найти высоту треугольника со сторонами 47, 46 и 5
Найти высоту треугольника со сторонами 139, 106 и 38
Найти высоту треугольника со сторонами 111, 109 и 86
Найти высоту треугольника со сторонами 146, 83 и 68
Найти высоту треугольника со сторонами 109, 107 и 73
Найти высоту треугольника со сторонами 47, 46 и 5
Найти высоту треугольника со сторонами 139, 106 и 38