Рассчитать высоту треугольника со сторонами 103, 71 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 71 + 50}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-103)(112-71)(112-50)}}{71}\normalsize = 45.0909812}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-103)(112-71)(112-50)}}{103}\normalsize = 31.0821327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-103)(112-71)(112-50)}}{50}\normalsize = 64.0291933}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 71 и 50 равна 45.0909812
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 71 и 50 равна 31.0821327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 71 и 50 равна 64.0291933
Ссылка на результат
?n1=103&n2=71&n3=50
Найти высоту треугольника со сторонами 140, 118 и 108
Найти высоту треугольника со сторонами 137, 92 и 58
Найти высоту треугольника со сторонами 62, 58 и 20
Найти высоту треугольника со сторонами 135, 110 и 73
Найти высоту треугольника со сторонами 84, 79 и 21
Найти высоту треугольника со сторонами 121, 86 и 81
Найти высоту треугольника со сторонами 137, 92 и 58
Найти высоту треугольника со сторонами 62, 58 и 20
Найти высоту треугольника со сторонами 135, 110 и 73
Найти высоту треугольника со сторонами 84, 79 и 21
Найти высоту треугольника со сторонами 121, 86 и 81