Рассчитать высоту треугольника со сторонами 103, 71 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 71 + 50}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-103)(112-71)(112-50)}}{71}\normalsize = 45.0909812}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-103)(112-71)(112-50)}}{103}\normalsize = 31.0821327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-103)(112-71)(112-50)}}{50}\normalsize = 64.0291933}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 71 и 50 равна 45.0909812
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 71 и 50 равна 31.0821327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 71 и 50 равна 64.0291933
Ссылка на результат
?n1=103&n2=71&n3=50
Найти высоту треугольника со сторонами 134, 94 и 45
Найти высоту треугольника со сторонами 91, 85 и 55
Найти высоту треугольника со сторонами 136, 121 и 35
Найти высоту треугольника со сторонами 88, 84 и 18
Найти высоту треугольника со сторонами 106, 99 и 49
Найти высоту треугольника со сторонами 150, 109 и 44
Найти высоту треугольника со сторонами 91, 85 и 55
Найти высоту треугольника со сторонами 136, 121 и 35
Найти высоту треугольника со сторонами 88, 84 и 18
Найти высоту треугольника со сторонами 106, 99 и 49
Найти высоту треугольника со сторонами 150, 109 и 44