Рассчитать высоту треугольника со сторонами 103, 71 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 71 + 52}{2}} \normalsize = 113}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113(113-103)(113-71)(113-52)}}{71}\normalsize = 47.9292277}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113(113-103)(113-71)(113-52)}}{103}\normalsize = 33.0385939}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113(113-103)(113-71)(113-52)}}{52}\normalsize = 65.4418302}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 71 и 52 равна 47.9292277
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 71 и 52 равна 33.0385939
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 71 и 52 равна 65.4418302
Ссылка на результат
?n1=103&n2=71&n3=52
Найти высоту треугольника со сторонами 125, 63 и 63
Найти высоту треугольника со сторонами 71, 63 и 43
Найти высоту треугольника со сторонами 94, 83 и 17
Найти высоту треугольника со сторонами 144, 141 и 109
Найти высоту треугольника со сторонами 45, 35 и 15
Найти высоту треугольника со сторонами 136, 124 и 101
Найти высоту треугольника со сторонами 71, 63 и 43
Найти высоту треугольника со сторонами 94, 83 и 17
Найти высоту треугольника со сторонами 144, 141 и 109
Найти высоту треугольника со сторонами 45, 35 и 15
Найти высоту треугольника со сторонами 136, 124 и 101