Рассчитать высоту треугольника со сторонами 103, 74 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 74 + 44}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-103)(110.5-74)(110.5-44)}}{74}\normalsize = 38.3325139}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-103)(110.5-74)(110.5-44)}}{103}\normalsize = 27.5398643}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-103)(110.5-74)(110.5-44)}}{44}\normalsize = 64.4683188}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 74 и 44 равна 38.3325139
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 74 и 44 равна 27.5398643
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 74 и 44 равна 64.4683188
Ссылка на результат
?n1=103&n2=74&n3=44
Найти высоту треугольника со сторонами 126, 116 и 79
Найти высоту треугольника со сторонами 103, 83 и 43
Найти высоту треугольника со сторонами 145, 115 и 63
Найти высоту треугольника со сторонами 130, 126 и 45
Найти высоту треугольника со сторонами 141, 133 и 15
Найти высоту треугольника со сторонами 134, 118 и 101
Найти высоту треугольника со сторонами 103, 83 и 43
Найти высоту треугольника со сторонами 145, 115 и 63
Найти высоту треугольника со сторонами 130, 126 и 45
Найти высоту треугольника со сторонами 141, 133 и 15
Найти высоту треугольника со сторонами 134, 118 и 101