Рассчитать высоту треугольника со сторонами 103, 82 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 82 + 27}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-103)(106-82)(106-27)}}{82}\normalsize = 18.9386435}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-103)(106-82)(106-27)}}{103}\normalsize = 15.0773667}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-103)(106-82)(106-27)}}{27}\normalsize = 57.5173618}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 82 и 27 равна 18.9386435
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 82 и 27 равна 15.0773667
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 82 и 27 равна 57.5173618
Ссылка на результат
?n1=103&n2=82&n3=27
Найти высоту треугольника со сторонами 135, 134 и 62
Найти высоту треугольника со сторонами 124, 95 и 43
Найти высоту треугольника со сторонами 117, 105 и 71
Найти высоту треугольника со сторонами 90, 79 и 77
Найти высоту треугольника со сторонами 129, 98 и 52
Найти высоту треугольника со сторонами 150, 117 и 117
Найти высоту треугольника со сторонами 124, 95 и 43
Найти высоту треугольника со сторонами 117, 105 и 71
Найти высоту треугольника со сторонами 90, 79 и 77
Найти высоту треугольника со сторонами 129, 98 и 52
Найти высоту треугольника со сторонами 150, 117 и 117