Рассчитать высоту треугольника со сторонами 103, 86 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 86 + 82}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-103)(135.5-86)(135.5-82)}}{86}\normalsize = 79.4186249}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-103)(135.5-86)(135.5-82)}}{103}\normalsize = 66.3106965}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-103)(135.5-86)(135.5-82)}}{82}\normalsize = 83.2927041}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 86 и 82 равна 79.4186249
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 86 и 82 равна 66.3106965
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 86 и 82 равна 83.2927041
Ссылка на результат
?n1=103&n2=86&n3=82
Найти высоту треугольника со сторонами 136, 97 и 55
Найти высоту треугольника со сторонами 83, 77 и 50
Найти высоту треугольника со сторонами 129, 118 и 109
Найти высоту треугольника со сторонами 149, 144 и 131
Найти высоту треугольника со сторонами 137, 97 и 58
Найти высоту треугольника со сторонами 134, 107 и 59
Найти высоту треугольника со сторонами 83, 77 и 50
Найти высоту треугольника со сторонами 129, 118 и 109
Найти высоту треугольника со сторонами 149, 144 и 131
Найти высоту треугольника со сторонами 137, 97 и 58
Найти высоту треугольника со сторонами 134, 107 и 59