Рассчитать высоту треугольника со сторонами 103, 90 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 90 + 82}{2}} \normalsize = 137.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137.5(137.5-103)(137.5-90)(137.5-82)}}{90}\normalsize = 78.5853658}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137.5(137.5-103)(137.5-90)(137.5-82)}}{103}\normalsize = 68.6668245}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137.5(137.5-103)(137.5-90)(137.5-82)}}{82}\normalsize = 86.2522308}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 90 и 82 равна 78.5853658
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 90 и 82 равна 68.6668245
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 90 и 82 равна 86.2522308
Ссылка на результат
?n1=103&n2=90&n3=82
Найти высоту треугольника со сторонами 142, 124 и 90
Найти высоту треугольника со сторонами 65, 63 и 34
Найти высоту треугольника со сторонами 68, 63 и 63
Найти высоту треугольника со сторонами 112, 105 и 74
Найти высоту треугольника со сторонами 150, 116 и 44
Найти высоту треугольника со сторонами 120, 96 и 46
Найти высоту треугольника со сторонами 65, 63 и 34
Найти высоту треугольника со сторонами 68, 63 и 63
Найти высоту треугольника со сторонами 112, 105 и 74
Найти высоту треугольника со сторонами 150, 116 и 44
Найти высоту треугольника со сторонами 120, 96 и 46