Рассчитать высоту треугольника со сторонами 103, 92 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 92 + 17}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-103)(106-92)(106-17)}}{92}\normalsize = 13.6840531}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-103)(106-92)(106-17)}}{103}\normalsize = 12.2226493}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-103)(106-92)(106-17)}}{17}\normalsize = 74.0548754}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 92 и 17 равна 13.6840531
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 92 и 17 равна 12.2226493
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 92 и 17 равна 74.0548754
Ссылка на результат
?n1=103&n2=92&n3=17
Найти высоту треугольника со сторонами 79, 74 и 35
Найти высоту треугольника со сторонами 123, 96 и 47
Найти высоту треугольника со сторонами 103, 101 и 4
Найти высоту треугольника со сторонами 86, 85 и 3
Найти высоту треугольника со сторонами 122, 104 и 63
Найти высоту треугольника со сторонами 150, 126 и 38
Найти высоту треугольника со сторонами 123, 96 и 47
Найти высоту треугольника со сторонами 103, 101 и 4
Найти высоту треугольника со сторонами 86, 85 и 3
Найти высоту треугольника со сторонами 122, 104 и 63
Найти высоту треугольника со сторонами 150, 126 и 38