Рассчитать высоту треугольника со сторонами 103, 93 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 93 + 32}{2}} \normalsize = 114}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114(114-103)(114-93)(114-32)}}{93}\normalsize = 31.6018414}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114(114-103)(114-93)(114-32)}}{103}\normalsize = 28.5337014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114(114-103)(114-93)(114-32)}}{32}\normalsize = 91.8428515}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 93 и 32 равна 31.6018414
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 93 и 32 равна 28.5337014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 93 и 32 равна 91.8428515
Ссылка на результат
?n1=103&n2=93&n3=32
Найти высоту треугольника со сторонами 124, 112 и 53
Найти высоту треугольника со сторонами 132, 110 и 62
Найти высоту треугольника со сторонами 133, 102 и 83
Найти высоту треугольника со сторонами 127, 116 и 52
Найти высоту треугольника со сторонами 97, 72 и 45
Найти высоту треугольника со сторонами 99, 96 и 27
Найти высоту треугольника со сторонами 132, 110 и 62
Найти высоту треугольника со сторонами 133, 102 и 83
Найти высоту треугольника со сторонами 127, 116 и 52
Найти высоту треугольника со сторонами 97, 72 и 45
Найти высоту треугольника со сторонами 99, 96 и 27