Рассчитать высоту треугольника со сторонами 103, 98 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 98 + 41}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-103)(121-98)(121-41)}}{98}\normalsize = 40.8546759}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-103)(121-98)(121-41)}}{103}\normalsize = 38.8714392}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-103)(121-98)(121-41)}}{41}\normalsize = 97.6526399}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 98 и 41 равна 40.8546759
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 98 и 41 равна 38.8714392
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 98 и 41 равна 97.6526399
Ссылка на результат
?n1=103&n2=98&n3=41
Найти высоту треугольника со сторонами 96, 83 и 28
Найти высоту треугольника со сторонами 67, 60 и 24
Найти высоту треугольника со сторонами 137, 110 и 68
Найти высоту треугольника со сторонами 84, 71 и 32
Найти высоту треугольника со сторонами 84, 76 и 21
Найти высоту треугольника со сторонами 146, 86 и 74
Найти высоту треугольника со сторонами 67, 60 и 24
Найти высоту треугольника со сторонами 137, 110 и 68
Найти высоту треугольника со сторонами 84, 71 и 32
Найти высоту треугольника со сторонами 84, 76 и 21
Найти высоту треугольника со сторонами 146, 86 и 74