Рассчитать высоту треугольника со сторонами 103, 99 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{103 + 99 + 12}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-103)(107-99)(107-12)}}{99}\normalsize = 11.5218836}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-103)(107-99)(107-12)}}{103}\normalsize = 11.0744318}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-103)(107-99)(107-12)}}{12}\normalsize = 95.0555393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 103, 99 и 12 равна 11.5218836
Высота треугольника опущенная с вершины A на сторону BC со сторонами 103, 99 и 12 равна 11.0744318
Высота треугольника опущенная с вершины C на сторону AB со сторонами 103, 99 и 12 равна 95.0555393
Ссылка на результат
?n1=103&n2=99&n3=12
Найти высоту треугольника со сторонами 99, 86 и 16
Найти высоту треугольника со сторонами 59, 54 и 31
Найти высоту треугольника со сторонами 149, 144 и 92
Найти высоту треугольника со сторонами 126, 119 и 16
Найти высоту треугольника со сторонами 143, 143 и 118
Найти высоту треугольника со сторонами 129, 87 и 59
Найти высоту треугольника со сторонами 59, 54 и 31
Найти высоту треугольника со сторонами 149, 144 и 92
Найти высоту треугольника со сторонами 126, 119 и 16
Найти высоту треугольника со сторонами 143, 143 и 118
Найти высоту треугольника со сторонами 129, 87 и 59