Рассчитать высоту треугольника со сторонами 104, 103 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 103 + 35}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-104)(121-103)(121-35)}}{103}\normalsize = 34.6493742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-104)(121-103)(121-35)}}{104}\normalsize = 34.3162071}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-104)(121-103)(121-35)}}{35}\normalsize = 101.968158}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 103 и 35 равна 34.6493742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 103 и 35 равна 34.3162071
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 103 и 35 равна 101.968158
Ссылка на результат
?n1=104&n2=103&n3=35
Найти высоту треугольника со сторонами 84, 62 и 53
Найти высоту треугольника со сторонами 121, 71 и 71
Найти высоту треугольника со сторонами 133, 124 и 73
Найти высоту треугольника со сторонами 139, 118 и 26
Найти высоту треугольника со сторонами 143, 104 и 79
Найти высоту треугольника со сторонами 141, 117 и 100
Найти высоту треугольника со сторонами 121, 71 и 71
Найти высоту треугольника со сторонами 133, 124 и 73
Найти высоту треугольника со сторонами 139, 118 и 26
Найти высоту треугольника со сторонами 143, 104 и 79
Найти высоту треугольника со сторонами 141, 117 и 100