Рассчитать высоту треугольника со сторонами 104, 58 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 58 + 50}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-104)(106-58)(106-50)}}{58}\normalsize = 26.0306231}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-104)(106-58)(106-50)}}{104}\normalsize = 14.5170783}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-104)(106-58)(106-50)}}{50}\normalsize = 30.1955228}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 58 и 50 равна 26.0306231
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 58 и 50 равна 14.5170783
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 58 и 50 равна 30.1955228
Ссылка на результат
?n1=104&n2=58&n3=50
Найти высоту треугольника со сторонами 83, 79 и 73
Найти высоту треугольника со сторонами 143, 107 и 103
Найти высоту треугольника со сторонами 126, 98 и 58
Найти высоту треугольника со сторонами 96, 87 и 74
Найти высоту треугольника со сторонами 139, 120 и 55
Найти высоту треугольника со сторонами 146, 101 и 77
Найти высоту треугольника со сторонами 143, 107 и 103
Найти высоту треугольника со сторонами 126, 98 и 58
Найти высоту треугольника со сторонами 96, 87 и 74
Найти высоту треугольника со сторонами 139, 120 и 55
Найти высоту треугольника со сторонами 146, 101 и 77